Мерзляк Глава 3 Отношения и пропорции (1)

Ознакомительная версия перед покупкой учебника: «Математика 6 класс / Мерзляк, Полонский, Якир — Просвещение 2021». Глава 3. Отношения и пропорции (Отношения. Пропорции. Процентное отношение двух чисел. Как найти «золотую середину». Прямая и обратная пропорциональные зависимости. Деление числа в данном отношении). Цитаты использованы в учебных целях.

ОГЛАВЛЕНИЕ (2021 г.)

 

Глава 3. Отношения и пропорции

Изучив материал этой главы, вы узнаете, что называют отношением двух чисел; какое равенство называют пропорцией; что такое процентное отношение двух чисел; какие связи между величинами называют прямой и обратной пропорциональными зависимостями; как можно найти вероятность случайного события.

Вы познакомитесь со следующими геометрическими фигурами: окружность, круг, цилиндр, конус, сфера, шар. Научитесь находить длину окружности и площадь круга.

 

§ 19. Отношения.


 

§ 20. Пропорции.


 

§ 21. Процентное отношение двух чисел. Как найти «золотую середину».


 

§ 22. Прямая и обратная пропорциональные зависимости.

Периметр Р квадрата со стороной, равной а, вычисляют по формуле Р = 4а. Например, если а = 2 см, то Р = 4 • 2 = 8 (см).

Если изменяется длина стороны квадрата, то изменяется и его периметр. В таких случаях говорят, что периметр и сторона квадрата являются переменными величинами, причём величина Р (периметра) зависит от величины а (длины стороны). Эта зависимость наглядно представлена на рисунке 19.

Мерзляк Глава 3 Отношения и пропорции (1)

Заметим, что если увеличить сторону квадрата, например, в 2 раза, то и его периметр увеличится в 2 раза; если уменьшить сторону квадрата в 3 раза, то периметр уменьшится в 3 раза и т. п. Понятно, что увеличение (уменьшение) периметра в несколько раз приводит к соответствующему увеличению (уменьшению) стороны квадрата.


 

§ 23. Деление числа в данном отношении.

Решим такую задачу.

Сплав массой 520 кг состоит из меди и цинка. Масса меди относится к массе цинка как 8 : 5. Найдите массы меди и цинка, содержащиеся в этом сплаве.

Решение. Будем считать, что сплав состоит из 8 + 5 = 13 (частей), имеющих одинаковые массы. Тогда масса одной части равна 520 : 13 = 40 (кг). Поскольку медь в сплаве составляет 8 частей, а цинк — 5 частей, то масса меди равна 8 • 40 = 320 (кг), а масса цинка равна 5 • 40 = 200 (кг).

Ответ: 320 кг и 200 кг. ◄

Из решения задачи следует, что число 520 можно представить в виде суммы двух слагаемых — 320 и 200, отношение которых равно 8 : 5.

В таких случаях говорят, что число 520 разделили в отношении 8 : 5. Также можно сказать, что число 520 представили в виде суммы двух слагаемых, пропорциональных числам 8 и 5.

Рассмотренную задачу можно решить другим способом.

Пусть масса одной части сплава составляет х кг. Тогда массы меди и цинка составляют соответственно кг и кг. Поскольку масса всего сплава равна 520 кг, то получаем уравнение 8х + 5х = 520. Отсюда 13х = 520, х = 40. Тогда массы меди и цинка равны соответственно 8 • 40 = 320 (кг) и 5 • 40 = 200 (кг).

Рассмотрим ещё один пример.

Нужно обработать 96 деталей. Первый рабочий обрабатывает за один час 9 деталей, второй — 8 деталей, а третий — 7. Каким образом следует распределить между ними работу, чтобы все трое рабочих обрабатывали детали одинаковое время?

Решение. Будем считать, что всё задание (96 деталей) состоит из 9 + 8 + 7 = 24 (частей), каждая из которых содержит одинаковое количество деталей. Тогда одна часть содержит 96 : 24 = 4 (детали). Следовательно, детали между рабочими нужно распределить так: первому рабочему дать на обработку 9 • 4 = 36 (деталей), второму — 8 • 4 = 32 (детали), а третьему — 7 • 4 = 28 (деталей).

Ответ: 36 деталей, 32 детали, 28 деталей. ◄

Решая эту задачу, мы число 96 разделили на три слагаемых, пропорциональных числам 9, 8 и 7. Также говорят, что число 96 разделили в отношении 9:8:7. Отношение 9:8:7 читают: «девять к восьми и к семи».

Мерзляк Глава 3 Отношения и пропорции (1)Мерзляк Глава 3 Отношения и пропорции (1)Мерзляк Глава 3 Отношения и пропорции (1)

 


Вы смотрели «Мерзляк Глава 3 Отношения и пропорции (Отношения. Пропорции. Процентное отношение двух чисел. Как найти «золотую середину». Прямая и обратная пропорциональные зависимости. Деление числа в данном отношении)». 

ОГЛАВЛЕНИЕ (2021 г.)

Похожие записи

Форма для написания комментария

На сайте используется ручная модерация. Срок проверки: от 1 часа до 3 дней.